Wednesday, December 28, 2011

Memimpikan Desa Berenergi Hibrida

Lamongan,wilayah utara dekat dengan pantai yang berpotensi ombak walaupun tidak begitu besar, energi matahari yang melimpah karena kita memang daerah tropis,ada puluhan peternakan sapi, ayam dll yang berpotensi energi biogas. Saat ini mayoritas energi listrik masih mengandalkan jaringan PLN, walau sedikit penerangan jalan di pantai utara yang menggunakan solar cell. Mari kita simak sedikit gambaran apa yang telah dilakukan di wilayah Bantul, yang memang menjadi tempat riset UGM, ITB dan LIPI, LAPAN yang mengeksplorasi energi di sana walaupun belum juga maksimal.Namun ke depan kita harus mengoptimalkan penggunaan hibrid energi demi penghematan energi minyak untuk penggunaan energi listrik.

Pantai Pandansimo di Kabupaten Bantul, DI Yogyakarta, bukanlah tergolong daerah makmur, bahkan penduduknya masih ada yang hidup di bawah garis kemiskinan.

Solusi untuk membantu mereka bangkit mengatasi masalah kemiskinan dan mendongkrak ekonomi masyarakat mulai dirintis tahun 2005, yaitu dengan memperkenalkan pembangkit energi angin di Dusun Ngentak, yang dihuni sekitar 350 keluarga. Ketika itu terbangun tiga unit kincir kemudian bertambah satu unit pada tahun 2008.

Potensi angin yang besar di Pantai Pandansimo yang pernah digunakan untuk meluncurkan roket Gama oleh mahasiswa Universitas Gadjah Mada pada tahun 1963 itu sesungguhnya telah diketahui sekitar tahun 1980.

Survei dan pemasangan kincir angin di lokasi tersebut dilakukan oleh Lembaga Penerbangan dan Antariksa Nasional (Lapan) bekerja sama dengan Jerman. Ketika itu dipasang kincir yang berukuran besar. Namun, pembangkit buatan asing ini tidak berfungsi optimal karena pola angin di kawasan itu tak stabil dan relatif kurang kecepatannya untuk memutar kincir.

Menurut Momon Sadiyatmo, peneliti kincir angin di Lapan yang kini menjabat Asisten Deputi Iptek Masyarakat di Kementerian Riset dan Teknologi, angin di Pandansimo yang menghadap Samudra Hindia itu relatif tenang pada pagi hari dan mulai menguat embusannya pada siang hari. Kecepatan angin pada tengah hari 2-5 meter per detik dan kian meningkat pada sore hingga malam dengan kecepatan 8 meter per detik.

Melihat pola angin dan kecepatannya, peneliti Lapan kemudian mendesain sistem kincir angin yang berukuran lebih kecil dan memiliki tiga sudut. Selain itu, di belakang kincir dilengkapi dengan sirip belakang dan engsel putar di pangkalnya. Hal ini memungkinkan kincir terus berputar karena mengikuti perubahan pola angin.

Energi hibrida

Kini di lokasi seluas 17 hektar itu telah terbangun 39 kincir angin dan belasan panel sel surya. Lokasi itu berada di kawasan milik Sultan Hamengku Buwono X yang dimanfaatkan secara cuma-cuma untuk membangkitkan kegiatan ekonomi terpadu.

Dari 39 kincir angin itu dapat dihasilkan 170 kW listrik. Adapun dari 15 sel surya fotovoltaik terbangkitkan 20 kW. Lalu dari biogas terpasok listrik 2,5 kW.

Energi yang dihasilkan dari dua jenis pembangkit itu kemudian dipadukan sehingga menghasilkan listrik untuk berbagai keperluan. Pemanfaatan energi terbarukan itu selain untuk penerangan bagi 200 warung yang ada pantai itu juga untuk mengaliri dengan listrik unit mesin pembuat es balok dan es batu (kristal).

Es balok sebanyak 1 ton per hari dimanfaatkan para nelayan untuk mengawetkan ikan hasil tangkapan. Dengan adanya es balok ini, ikan yang disimpan dapat dipertahankan kesegarannya dua hingga tiga hari lebih lama. Selain itu, es batu 750 kg per hari dipasok untuk warung makanan dan minuman di daerah itu.

Keberadaan energi hibrida juga mendorong aktivitas ekonomi lain, yaitu perikanan air tawar. Listrik yang dihasilkan pembangkit itu digunakan untuk memutar pompa air yang mengairi tambak-tambak ikan.

Biogas

Selain energi listrik dari sistem hibrida, desa energi ini juga menghasilkan biogas. Energi gas ini merupakan hasil samping dari proses penguraian kotoran sapi secara anaerob dalam tangki penampung.

Dari penguraian limbah organik oleh bakteri juga didapatkan pupuk kompos. Pupuk kompos disalurkan untuk pertanian di kawasan lahan berpasir. Tanaman pangan yang dibudidayakan antara lain kacang tanah, kacang panjang, jagung, cabe, dan singkong.

Pembangunan desa terpadu ini melibatkan banyak pihak, yaitu Kemenristek dan Lapan, UGM, dan kementerian terkait, seperti Kementerian Kelautan dan Perikanan, Kementerian Pertanian.

Lapan dalam program itu membantu pembangunan unit pembangkit energi hibrida. Adapun Lembaga Ilmu Pengetahuan Indonesia (LIPI) membangunkan daerah peternakan sapi dan unit tangki pengolah kotoran sapi. Kawasan itu menampung sekitar 300 sapi milik penduduk sekitar.

Pada tahap awal 2009-2014, kawasan ini dikelola oleh Yayasan Kinaryo Bayu Pradito (Kibar). Namun, setelah itu diharapkan akan diteruskan oleh koperasi yang dijalankan oleh masyarakat. Hal ini dapat tercapai karena yayasan melakukan program pelatihan bagi pemuda setempat untuk mengoperasikan fasilitas yang ada.

Saat ini aktivitas ekonomi di kawasan itu mulai tampak. Menurut Ketua Yayasan Kibar, Tlau Sakti Santosa, diproyeksikan tahun 2014 dengan fasilitas yang ada penduduk Dusun Ngentak dapat mandiri mengelola daerah itu, termasuk memperbaiki dan produksi sistem energi hibrida tersebut.

Melihat hal itu muncul tawaran dari Badan Litbang Pertanian Kemtan untuk melakukan replikasi program serupa di lima lokasi di luar Yogyakarta, yaitu di Sulawesi Selatan dan NTT. Namun, lokasi tepatnya kini masih disurvei.(red)

Tuesday, August 30, 2011

Solar Power Inverter Design Consideration

Design Considerations Solar Power Inverter


Block Diagram

The solar inverter is a critical component in a solar energy system. It performs the conversion of the variable DC output of the Photovoltaic (PV) module(s) into a clean sinusoidal 50- or 60 Hz AC current that is then applied directly to the commercial electrical grid or to a local, off-grid electrical network. Typically, communications capability is included so users can monitor the inverter and report on power and operating conditions, provide firmware updates and control the inverter grid connection. Depending on the grid infrastructure wired (RS-485, CAN, Power Line Communication, Ethernet) or wireless (Bluetooth, ZigBee/IEEE802.15.4, 6loWPAN) networking options can be used.

At the heart of the inverter is a real-time microcontroller. The controller executes the very precise algorithms required to invert the DC voltage generated by the solar module into AC. This controller is programmed to perform the control loops necessary for all the power management functions necessary including DC/DC and DC/AC. The controller also maximizes the power output from the PV through complex algorithms called maximum power point tracking (MPPT). The PV maximum output power is dependent on the operating conditions and varies from moment to moment due to temperature, shading, soilage, cloud cover, and time of day so tracking and adjusting for this maximum power point is a continuous process. For systems with battery energy storage, the controller can control the charging as well as switch over to battery power once the sun sets or cloud cover reduces the PV output power. The controller contains advanced peripherals like high precision PWM outputs and ADCs for implementing control loops. The ADC measures variables, such as the PV output voltage and current, and then adjusts the DC/DC or DC/AC converter by changing the PWM duty cycle.

The C2000 in particular is designed to read the ADC and adjust the PWM within a single clock cycle, so real time control is possible. Communications on a simple system can be handled by a single processor, more elaborate systems with complex displays and reporting on consumption and feed-in-tariff pay back may require a secondary processor, potentially with ethernet capability like the Stellaris Cortex M3 parts. For safety reasons, isolation between the processor and the current and voltage is also required, as well as on the communications bus to the outside world.

(Source : Texas Instrument)

Monday, August 22, 2011

AKREDITASI TEKNIK INFORMATIKA :





PERSIAPAN AKREDITASI ELEKTRO :

Wednesday, August 17, 2011

Harmonic, Problem and Solution

Power is a combination of voltages and currents generated by the generator at the central plant (power plant). Ideally, the voltage and current waveforms generated sin-shaped smooth (smooth sine wave).
However, the facts on the ground indicate that the voltage and current waveforms are not as smooth as desired. Deviations from the ideal waveform is often expressed as THD (Total Harmonic Distortion). Or THD can be used to describe large harmonics contained in the wave.
For this problem is used calculate with Fourier series. Suppose the frequency of electrical waves generated by PLN at 50 Hz, then the harmonics are the Fourier components of a value greater frequency of 50Hz.
Harmonic currents are rather low impedance to flow in, for example on the capacitor, because the capacitors have low impedance for high frequencies. Harmonics itself consists of two harmonic components like power in general. Namely harmonic voltage and harmonic currents. According to one source, the voltage harmonics is more dangerous than the harmonic currents.
Harmonics generally occur on the load side or users. Both the industry and offices and households. The effect of harmonics is very dangerous for the user. Some examples of incidents caused by the harmonics:
- Damage to electrical equipment
- Burning of the cable / conductor Conductor though it has not reached the maximum value.
Here are tips to reduce the THD (Total Harmonic Distortion of Mr. Prasetyo Roem):
a. At the time of purchasing an inverter, UPS, and all buy see specnya (optional) harmonic filters. Once installed, the commissioning time, make sure (measured himself) that harmonics filters are especially well. I once met a filter inverter from famous brands do not work.
b. Attach an additional filter (series) with and installed before the UPS, inverter.
c. Replace the 'vacuum' harmonic with a series inductor and capacitor (and resistor), mounted parallel with the load. Some harmonics sucked into heat and discharged into the atmosphere (using AC) and partly transferred into a slight increase in voltage. Inductor value and capacitornya in-tuned to the dominant harmonic frequency would sucked, for example, harmonic-5 = 250Hz. May need to set some of the 'vacuum' is harmonic for different frequencies. The dominant harmonic is usually 3, 5, 7.

What's Harmonic ?
Harmonic is a wave consisting of a sinusoidal wave with some frequency. This principle is derived from Fourier transformation described in the following formula:



This transformation could describe a waveform into components DC, cosine or sine with several different frequencies. DC component is represented (ao / 2) and n is the harmonic to the n. Therefore, there is the term harmonic to 3, 5 and so on that indicate the frequency of multiples of 3, 5, etc. of the fundamental frequency. The figure below shows how a square wave can be parsed into several sine wave with some frequency that is n = 3.5 dan7.


If there are harmonics in a power system, it is fundamental frekeuensi frekeunsi system eg 50Hz or 60Hz. Harmonics of the power system can be in the form of voltage harmonics or current harmonics.

What causes the appearance of harmonics of the power system?
The reason is the non-linear loads, eg A / VSD (Adjustable / Variable Speed ​​Drives), SMPS (Switch Mode Power Supply) etc.. In the form of real, non-linear loads are loads that use power electronics components. What is meant by non-linear load is a load that acts as an arbitrary impedance. There are non-linear load impedance is changed periodically such as A / VSD, but there is also a non-periodic changes such as arc furnaces.




The picture beside shows the flow of a non-linear load fluctuations periodically with 10Ohm resistance value and an open circuit. Beside it shows the load current linearly with 10Ohm resistance. Voltage source, Vs, a pure sinusoidal form with frequency 50Hz. Non-linear load current during the period of sinusoidal shaped sine is positive and zero on the negative sine period. In the linear load current, always-shaped sinus. The results of an analysis using Fourier transform or the so-called harmonic spectrum is shown in the figure below. Function shows the amplitude spectrum at frequencies that were analyzed. In the voltage source and a linear load currents appears that the frequency appears only at 50Hz. While the current non-linear load there appears a DC component (frequency = 0Hz) and several components of the sine / cosine with the largest magnitude at the fundamental frequency (frequency = 50Hz). In practice, non-linear loads with current form as above can be obtained in a single phase half wave rectifier.
Another example of non-linear flow on the A / VSD (or so-called inverter drives) can be seen in the figure below with harmonisanya spectrum. The spectrum of harmonics appear at n = 5.7, 11, 13 etc. or in general 6x 6x +1 and-1 (x = bil. Original).


What are the effects of harmonics on power system?
Harmonic currents can cause the appearance of voltage harmonics on the power system. This is because the harmonic currents flow through the system impedance. Impedance can be derived from the line, transformer, etc.. The negative effects of the presence of harmonic currents are:
- Noise on the analog meter kWh
- Increased losses and abnormal heating in the transformer
- Increased losses and abnormal heating in the motor
- The possibility of explosion of the capacitor bank
- Etc.
Yet this effect does not always show up and happens when there are other conditions that support. Therefore the presence of harmonic currents are not always accompanied by the disorder. The amount of harmonic currents in the system in general increase the likelihood of interference. Presence of harmonic currents in the system should not be reduced by installing harmonic filters. Installation of filters need to be reviewed their emergence both technical and economic terms.
Hopefully useful and Good Work!

References:
- Surya Santoso, H. Wayne Beaty, Roger C. Dugan, and Mark F. McGranaghan, "Electrical Power Systems Quality," McGraw-Hill, 2002

Monday, August 8, 2011

Ocean Wave Energi (Energi Gelombang Laut)


Betapa besar anugerah Allah menciptakan semuanya kekayaan alam untuk manusia, terutama untuk energi. Allah telah melimpahkan semuanya kepada manusia.....All for human....be Thank to GOD alhamdulillah....
Satu lagi energi yg bisa dihasilkan adalah Gelombang laut seperti artikel berikut :


Ocean wave energy is captured directly from surface waves or from pressure fluctuations below the surface.



Waves are caused by the wind blowing over the surface of the ocean. In many areas of the world, the wind blows with enough consistency and force to provide continuous waves. There is tremendous energy in the ocean waves. Wave power devices extract energy directly from the surface motion of ocean waves or from pressure fluctuations below the surface.

Wave power varies considerably in different parts of the world, and wave energy can't be harnessed effectively everywhere. Wave-power rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Australia, and the northwestern coasts of the United States.
Ocean Wave Energy Technologies

A variety of technologies have been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales.

Wave technologies have been designed to be installed in nearshore, offshore, and far offshore locations. The OCS Alternative Energy Programmatic EIS is concerned primarily with offshore and far offshore wave technologies. Offshore systems are situated in deep water, typically of more than 40 meters (131 feet).

While all wave energy technologies are intended to be installed at or near the water's surface, they differ in their orientation to the waves with which they are interacting and in the manner in which they convert the energy of the waves into other energy forms, usually electricity. The following wave technologies have been the target of recent development.

Terminator devices extend perpendicular to the direction of wave travel and capture or reflect the power of the wave. These devices are typically onshore or nearshore; however, floating versions have been designed for offshore applications. The oscillating water column is a form of terminator in which water enters through a subsurface opening into a chamber with air trapped above it. The wave action causes the captured water column to move up and down like a piston to force the air though an opening connected to a turbine.

A point absorber is a floating structure with components that move relative to each other due to wave action (e.g., a floating buoy inside a fixed cylinder). The relative motion is used to drive electromechanical or hydraulic energy converters.



Rendition of a Wave Farm Made Up of Permanent Magnet Linear Generator Buoys




Point Absorber Wave Energy Farm



Attenuator Wave Energy Device


Attenuators are long multisegment floating structures oriented parallel to the direction of the waves. The differing heights of waves along the length of the device causes flexing where the segments connect, and this flexing is connected to hydraulic pumps or other converters.

Overtopping devices have reservoirs that are filled by incoming waves to levels above the average surrounding ocean. The water is then released, and gravity causes it to fall back toward the ocean surface. The energy of the falling water is used to turn hydro turbines. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through internal turbines and then back into the sea.
Environmental Considerations

Potential environmental considerations for the development of wave energy include the following:
Positive or negative impacts on marine habitat (depending on the nature of additional submerged surfaces, above-water platforms, and changes in the seafloor);
Toxic releases from leaks or accidental spills of liquids used in those systems with working hydraulic fluids;
Visual and noise impacts (device-specific, with considerable variability in visible freeboard height and noise generation above and below the water surface);
Conflict with other sea space users, such as commercial shipping and recreational boating;

http://ocsenergy.anl.gov

OTEC (Ocean Thermal Energy Conversion)

Summary

The vertical temperature distribution in the open ocean can be simplistically described as consisting of two layers separated by an interface. The upper layer is warmed by the sun and mixed to depths of about 100 m by wave motion. The bottom layer consists of colder water formed at high latitudes. The interface or thermocline is sometimes marked by an abrupt change in temperature but more often the change is gradual. The temperature difference between the upper (warm) and bottom (cold) layers ranges from 10 °C to 25 °C, with the higher values found in equatorial waters. To an engineer this implies that there are two enormous reservoirs providing the heat source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean Thermal Energy Conversion.

Several techniques have been proposed to use this ocean thermal resource; however, at present it appears that only the closed cycle (CC-OTEC) and the open cycle (OC-OTEC) schemes have a solid foundation of theoretical as well as experimental work. In the CC-OTEC system, warm surface seawater and cold seawater are used to vaporize and condense a working fluid, such as anhydrous ammonia, which drives a turbine-generator in a closed loop producing electricity. In the OC-OTEC system seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive a turbine-generator. Cold seawater is used to condense the steam after it has passed through the turbine. The open-cycle can, therefore, be configured to produce desalinated water as well as electricity.

Records available from experimental plants demonstrate technical viability and provide invaluable data on the operation of OTEC plants. The economic evaluation of OTEC plants indicates that their commercial future lies in floating plants of approximately 100 MW capacity for industrialized nations and smaller plants for small-island-developing-states (SIDS). Unfortunately, the size of the experimental plants (< 0.3 MW) is about two orders of magnitude less than the size required for commercial (i.e., cost competitive) systems in industrial nations. Data extrapolation of this order is not acceptable to banking institutions or developers. The records that are available, however, are sufficient to design an OTEC plant sized at approximately 1.5 to 2 MW. This size range is appropriate for the smaller markets encountered in SIDS.

To proceed beyond experimental plants and towards commercialization in developed nations, a scaled version of a 100 MW plant must be designed and operated. The operational data is needed to earn the support required from the financial community and developers. Considering a 4-module system, a 1/5-scaled version of a 25 MW module is proposed as an appropriate size. The 5 MW pre-commercial plant is also directly applicable in some SIDS.

1 – Background

It is estimated that, in an annual basis, the amount solar energy absorbed by the oceans is equivalent to at least 4000 times the amount presently consumed by humans. For an OTEC efficiency of 3 percent, in converting ocean thermal energy to electricity, we would need less than 1 percent of this renewable energy to satisfy all of our desires for energy. However, even assuming that the removal of such relatively small amount of ocean solar energy does not pose an adverse environmental impact we must first identify and develop the means to transform it to a useful form and to transport it to the user.

The first documented reference to the use of ocean temperature differences to produce electricity is found in Jules Verne’s “Twenty Thousand Leagues Under the Sea” published in 1870. Eleven years after Jules Verne, D’Arsonval proposed to use the relatively warm (24 °C to 30 °C) surface water of the tropical oceans to vaporize pressurized ammonia through a heat exchanger (i.e., evaporator) and use the resulting vapor to drive a turbine-generator. The cold ocean water transported (upwelled) to the surface from 800 m to 1000 m depths, with temperatures ranging from 8 °C to 4 °C, would condense the ammonia vapor through another heat exchanger (i.e., condenser). His concept is grounded in the thermodynamic Rankine cycle used to study steam (vapor) power plants. Because the ammonia circulates in a closed loop, this concept has been named closed-cycle OTEC (CC-OTEC). D’Arsonval’s concept was demonstrated in 1979, when a small plant mounted on a barge off Hawaii (Mini-OTEC) produced 50 kW of gross power, with a net output of 18 kW. Subsequently, a 100 kW gross power, land-based plant was operated in the island nation of Nauru by a consortium of Japanese companies. These plants were operated for a few months to demonstrate the concept. They were too small to be scaled to commercial size systems.
Mini-OTEC (1979)

Mini-OTEC (1979)

Forty years after D’Arsonval, Georges Claude, another French inventor, proposed to use the ocean water as the working fluid. In Claude’s cycle the surface water is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive a turbine-generator and the relatively colder deep seawater is used to condense the steam after it has passed through the turbine. This cycle can, therefore, be configured to produce desalinated water as well as electricity. Claude’s cycle is also referred to as open-cycle OTEC (OC-OTEC) because the working fluid flows once through the system. He demonstrated this cycle in 1930 in Cuba with a small land-based plant making use of a direct contact condenser (DCC). Therefore, desalinated water was not a by-product. The plant failed to achieve net power production because of a poor site selection (e.g., thermal resource) and a mismatch of the power and seawater systems. However, the plant did operate for several weeks. This was followed by the design of a 2.2 MW floating plant for the production of up to 2000 tons of ice (this was prior to the wide availability of household refrigerators) for the city of Rio de Janeiro. Claude housed his power plant in a ship (i.e., plantship), about 100 km offshore. Unfortunately, he failed in his numerous attempts to install the vertical long pipe required to transport the deep ocean water to the ship (the cold water pipe, CWP) and had to abandon his enterprise in 1935. His failure can be attributed to the absence of the offshore industry, and ocean engineering expertise presently available. His biggest technological challenge was the at-sea installation of a CWP. This situation is markedly different now that there is a proven record in the installation of several pipes during experimental operations.

The next step towards answering questions related to operation of OTEC plants was the installation of a small OC-OTEC land-based experimental facility in Hawaii. This plant was designed and operated by a team led by the author. The turbine-generator was designed for an output is 210 kW for 26 °C warm surface water and a deep water temperature 6 °C. A small fraction (10 percent) of the steam produced was diverted to a surface condenser for the production of desalinated water. The experimental plant was successfully operated for six years. The highest production rates achieved were 255 kWe (gross) with a corresponding net power of 103 kW and 0.4 l s-1 of desalinated water. These are world records for OTEC.
210 kW OC-OTEC Experimental Plant (1993-1998)


Surface Condenser for Desalinated Water Production (1994-1998)



A two-stage OTEC hybrid cycle, wherein electricity is produced in a first-stage (closed cycle) followed by water production in a second-stage, has been proposed by the author and his coworkers to maximize the use of the thermal resource available to produce water and electricity. In the second-stage, the temperature difference available in the seawater effluents from an OTEC plant (e.g., 12 °C) is used to produce desalinated water through a system consisting of a flash evaporator and a surface condenser (basically, an open cycle without a turbine-generator). In the case of an open cycle plant, the addition of a second-stage results in doubling water production.

The use of the cold deep water as the chiller fluid in air conditioning (AC) systems has also been proposed. It has been determined that these systems would have tremendous economic potential as well as providing significant energy conservation independent of OTEC. For example, to produce 5800 tons (roughly equivalent to 5800 rooms) of air conditioning only 1 m 3 s-1 of 7 °C deep ocean water is required. The pumping power required is 360 kW as compared to 5000 kW for a conventional AC system. The investment payback period is estimated at 3 to 4 years.

A number of possible configurations for OTEC plants have been proposed. These configurations range from floating plants to land-based plants, including shelf-mounted towers and other offshore structures. The primary candidate for commercial size plants appears to be the floating plant, positioned close to land, transmitting power to shore via a submarine power cable.

2 – Technical limitations

The performance of OTEC power generating cycles is assessed with the same elementary concepts of thermodynamics used for conventional steam power plants. The major difference arises from the large quantities of warm and cold seawater required for heat transfer processes, resulting in the consumption of 20 to 30 percent of the power generated by the turbine-generator in the operation of pumps. The power required to pump seawater is determined accounting for the pipe-fluid frictional losses and in the case of the cold seawater for the density head, i.e., gravitational energy due to the differences in density between the heavier (colder) water inside the pipe and the surrounding water column. The seawater temperature rise, due to frictional losses, is negligible for the designs presented herein.

The ideal energy conversion for 26 °C and 4 °C warm and cold seawaters is 8 percent. An actual OTEC plant will transfer heat irreversibly and produce entropy at various points in the cycle yielding an energy conversion of 3 to 4 percent. These values are small compared to efficiencies obtained for conventional power plants; however, OTEC uses a resource that is constantly renewed by the sun. Considering practical sizes for the cold water pipe OTEC is presently limited to sizes of no more than about 100 MW. In the case of the open-cycle, due to the low-pressure steam, the turbine is presently limited to sizes of no more than 2.5 MW. The thermal performance of CC-OTEC and OC-OTEC is comparable. Floating vessels approaching the dimensions of supertankers, housing factories operated with OTEC-generated electricity, or transmitting the electricity to shore via submarine power cables have been conceptualized. Large diameter pipes suspended from these plantships extending to depths of 1000 m are required to transport the deep ocean water to the heat exchangers onboard. The design and operation of these cold water pipes are major issues that have been resolved by researchers and engineers in the USA.

It has been determined that approximately 4 m3 s-1 of warm seawater and 2 m3 s-1 of cold seawater (ratio of 2:1), with a nominal temperature difference of 20 °C, are required per MW of exportable or net electricity (net = gross – inhouse usage). To keep the water pumping losses at about 20 to 30 percent of the gross power, an average speed of less than 2 m s-1 is considered for the seawater flowing through the pipes transporting the seawater resource to the OTEC power block. Therefore, a 100 MW plant would use 400 m 3 s-1 of 26 °C water flowing through a 16 m inside diameter pipe extending to a depth of 20 m; and 200 m3 s-1 of 4 °C water flowing through an 11 m diameter pipe extending to depths of 1000 m. Using similar arguments, a 20 m diameter pipe is required for the mixed water return. To minimize the environmental impact due to the return of the processed water to the ocean (mostly changes in temperature), a discharge depth of 60 m is sufficient for most sites considered feasible, resulting in a pipe extending to depths of 60 m.

The amount of total world power that could be provided by OTEC must be balanced with the impact to the marine environment that might be caused by the relatively massive amounts of seawater required to operate OTEC plants. The discharge water from a 100 MW plant would be equivalent to the nominal flow of the Colorado River into the Pacific Ocean (1/10 the Danube, or 1/30 the Mississippi, or 1/5 the Nile into the Atlantic). The discharge flow from 60,000 MW (0.6 percent of present world consumption) of OTEC plants would be equivalent to the combined discharge from all rivers flowing into the Atlantic and Pacific Oceans (361,000 m3 s-1). Although river runoff composition is considerably different from the OTEC discharge, providing a significant amount of power to the world with OTEC might have an impact on the environment below the oceanic mixed layer and, therefore, could have long-term significance in the marine environment. However, numerous countries throughout the world could use OTEC as a component of their energy equation with relatively minimal environmental impact. Tropical and subtropical island sites could be made independent of conventional fuels for the production of electricity and desalinated water by using plants of appropriate size. The larger question of OTEC as a significant provider of power for the world cannot be assessed, beyond the experimental plant stage, until some operational and environmental impact data is made available through the construction and operation of the pre-commercial plant mentioned above.

3 – OTEC and the environment

OTEC offers one of the most benign power production technologies, since the handling of hazardous substances is limited to the working fluid (e.g., ammonia), and no noxious by-products are generated. OTEC requires drawing seawater from the mixed layer and the deep ocean and returning it to the mixed layer, close to the thermocline, which could be accomplished with minimal environmental impact. The carbon dioxide out-gassing from the seawater used for the operation of an OC-OTEC plant is less than 1 percent of the approximately 700 grams per kWh amount released by fuel oil plants. The value is even lower in the case of a CC-OTEC plant.

A sustained flow of cold, nutrient-rich, bacteria-free deep ocean water could cause sea surface temperature anomalies and biostimulation if resident times in the mixed layer and the euphotic zone respectively are long enough (i.e., upwelling). The euphotic zone is the upper layer of the ocean in which there is sufficient light for photosynthesis. This has been taken to mean the 1 percent-light-penetration depth (e.g., 120 m in Hawaiian waters). This is unduly conservative, because most biological activity requires radiation levels of at least 10 percent of the sea surface value. Since light intensity decreases exponentially with depth, the critical 10 percent-light-penetration depth corresponds to, for example, 60 m in Hawaiian waters. The analyses of specific OTEC designs indicate that mixed seawater returned at depths of 60 m results in a dilution coefficient of 4 (i.e., 1 part OTEC effluent is mixed with 3 parts of the ambient seawater) and equilibrium (neutral buoyancy) depths below the mixed layer throughout the year. This water return depth also provides the vertical separation, from the warm water intake at about 20 m, required to avoid reingestion into the plant. This value will vary as a function of ocean current conditions. It follows that the marine food web should be minimally affected and that persistent sea surface temperature anomalies should not be induced. These conclusions need to be confirmed with actual field measurements that could be performed with the pre-commercial plant described in Section 9.

To have effective heat transfer it is necessary to protect the heat exchangers from biofouling. It has been determined that biofouling only occurs in OTEC heat exchangers exposed to surface seawater. Therefore, it is only necessary to protect the CC-OTEC evaporators. Chlorine (Cl2 ) has been proposed along with several mechanical means. Depending upon the type of evaporator, both chemical and mechanical means could be used. To protect marine life, the Environmental Protection Agency (EPA) in the USA allows a maximum Cl2 discharge of 0.5 mg l-1 and an average of 0.1 mg l-1. CC-OTEC plants need to use Cl2 at levels of less than 10 percent of the EPA limits. The power plant components will release small quantities of working fluid during operations. Marine discharges will depend on the working fluid, the biocides, the depth of intake and the discharge configuration chosen.

Other potentially significant concerns are related to the construction phase. These are similar to those associated with the construction of any power plant, shipbuilding and the construction of offshore platforms. What is unique to OTEC is the movement of seawater streams with flow rates comparable to those of rivers and the effect of passing such streams through the OTEC components before returning them to the ocean. The use of biocides and ammonia are similar to other human activities. If occupational health and safety regulations like those in effect in the USA are followed, working fluid and biocide (most probably anhydrous ammonia and chlorine) emissions from a plant should be too low to detect outside the plant sites. A major release of working fluid or biocide would be hazardous to plant workers, and potentially hazardous to the populace in surrounding areas, depending on their proximity. Both ammonia and chlorine can damage the eyes, skin, and mucous membranes, and can inhibit respiration. Should an accident occur with either system, the risks are similar to those for other industrial applications involving these chemicals. Ammonia is used as a fertilizer and in ice skating rink refrigeration systems. Chlorine is used in municipal water treatment plants and in steam power plants. Chlorine can be generated in situ; therefore storage of large quantities of chlorine is not recommended.

Organisms impinged by an OTEC plant are caught on the screens protecting the intakes. Impingement is fatal to the organism. An entrained organism is drawn into and passes through the plant. Entrained organisms may be exposed to biocides, and temperature and pressure shock. Entrained organisms may also be exposed to working fluid and trace constituents (trace metals and oil or grease). Intakes should be designed to limit the inlet flow velocity to minimize entrainment and impingement. The inlets need to be tailored hydrodynamically so that withdrawal does not result in turbulence or recirculation zones in the immediate vicinity of the plant. Many, if not all, organisms impinged or entrained by the intake waters may be damaged or killed. Although experiments suggest that mortality rates for phytoplankton and zooplankton entrained by the warm-water intake may be less than 100 percent, in fact only a fraction of the phytoplankton crops from the surface may be killed by entrainment. Prudence suggests that for the purpose of assessment, 100 percent capture and 100 percent mortality upon capture should be assumed unless further evidence exists to the contrary. Metallic structural elements (e.g., heat exchangers, pump impellers, metallic piping) corroded or eroded by seawater will add trace elements to the effluent. It is difficult to predict whether metals released from a plant will affect local biota. Trace elements differ in their toxicity and resistance to corrosion. Few studies have been conducted of tropical and subtropical species. Furthermore, trace metals released by OTEC plants will be quickly diluted with great volumes of water passing through the plant. However, the sheer size of an OTEC plant circulation system suggests that the aggregate of trace constituents released from the plant or redistributed from natural sources could have long-term significance for some organisms.

OTEC plant construction and operation may affect commercial and recreational fishing. Fish will be attracted to the plant, potentially increasing fishing in the area. Enhanced productivity due to redistribution of nutrients may improve fishing. However, the losses of inshore fish eggs and larvae, as well as juvenile fish, due to impingement and entrainment and to the discharge of biocides may reduce fish populations. The net effect of OTEC operation on aquatic life will depend on the balance achieved between these two effects. Through adequate planning and coordination with the local community, recreational assets near an OTEC site may be enhanced.

Other risks associated with the OTEC power system are the safety issues associated with steam electric power generation plants: electrical hazards, rotating machinery, use of compressed gases, heavy material-handling equipment, and shop and maintenance hazards. Because the CC-OTEC power plant operates as a low-temperature, low pressure Rankine cycle, it poses less hazard to operating personnel and the local population than conventional fossil-fuel plants. It is essential that all potentially significant concerns be examined and assessed for each site and design to assure that OTEC is an environmentally benign and safe alternative to conventional power generation. The consensus among researchers is that the potentially detrimental effects of OTEC plants on the environment can be avoided or mitigated by proper design.

4 – Engineering challenges

The design and installation of a cost-effective pipe to transport large quantities of cold water to the surface (i.e., cold water pipe, CWP) presented an engineering challenge of significant magnitude complicated by a lack of evolutionary experience. This challenge was meet in the USA with a program relying on computer-aided analytical studies integrated with laboratory and at-sea tests. The greatest outcome achieved has been the design, fabrication, transportation, deployment and test at-sea of an instrumented 2.4 m diameter, 120 m long, fiberglass reinforced plastic (FRP) sandwich construction pipe attached to a barge. The data obtained was used to validate the design technology developed for pipes suspended from floating OTEC plants. This type of pipe is recommended for floating OTEC plants. For land-based plants there is a validated design for high-density polyethylene pipes of diameter less than 1.6 m. In the case of larger diameter pipes offshore techniques used to deploy large segmented pipes made of steel, concrete or FRP are applicable. Pressurized pipes made of reinforced elastomeric fabrics (e.g., soft pipes), with pumps located at the cold water intake, seem to offer the most innovative alternative to conventional concepts. However, the operability of pumps in 800 m to 1000 m water depths over extended periods must be verified and the inspection, maintenance and repair (IM&R) constraints established before soft pipes can be used in practical designs.

Other components for OTEC floating plants that present engineering challenges are the position keeping system and the attachment of the submarine power cable to the floating plant. Deep ocean-mooring systems, designed for water depths of more than 1000 m, or dynamic positioning thrusters developed by the offshore industry can be used for position keeping. The warm water intake and the mixed return water also provide the momentum necessary to position the surface vessel. The offshore industry also provides the engineering and technological backgrounds required to design and install the riser for the submarine power cable.

The design of OTEC CWPs, mooring systems and the submarine power cable must take into consideration survivability loads as well as fatigue induced loads. The first kind is based on extreme environmental phenomena, with a relatively long return period, that might result in ultimate strength failure while the second kind might result in fatigue-induced failure through normal operations.

5 – Open cycle OTEC

The open cycle consists of the following steps: (i) flash evaporation of a fraction of the warm seawater by reduction of pressure below the saturation value corresponding to its temperature (ii) expansion of the vapor through a turbine to generate power; (iii) heat transfer to the cold seawater thermal sink resulting in condensation of the working fluid; and (iv) compression of the non-condensable gases (air released from the seawater streams at the low operating pressure) to pressures required to discharge them from the system. These steps are depicted in Figure 1. In the case of a surface condenser the condensate (desalinated water) must be compressed to pressures required to discharge it from the power generating system.

The evaporator, turbine, and condenser operate in partial vacuum ranging from 3 percent to 1 percent atmospheric pressure. This poses a number of practical concerns that must be addressed. First, the system must be carefully sealed to prevent in-leakage of atmospheric air that can severely degrade or shut down operation. Second, the specific volume of the low-pressure steam is very large compared to that of the pressurized working fluid used in closed cycle OTEC. This means that components must have large flow areas to ensure that steam velocities do not attain excessively high values. Finally, gases such as oxygen, nitrogen and carbon dioxide that are dissolved in seawater (essentially air) come out of solution in a vacuum. These gases are uncondensable and must be exhausted from the system. In spite of the aforementioned complications, the Claude cycle enjoys certain benefits from the selection of water as the working fluid. Water, unlike ammonia, is non-toxic and environmentally benign. Moreover, since the evaporator produces desalinated steam, the condenser can be designed to yield fresh water. In many potential sites in the tropics, potable water is a highly desired commodity that can be marketed to offset the price of OTEC-generated electricity.

Flash evaporation is a distinguishing feature of open cycle OTEC. Flash evaporation involves complex heat and mass transfer processes. In the configuration tested by a team lead by the author, warm seawater was pumped into a chamber through spouts designed to maximize the heat-and-mass-transfer surface area by producing a spray of the liquid. The pressure in the chamber (2.6 percent of atmospheric) was less than the saturation pressure of the warm seawater. Exposed to this low-pressure environment, water in the spray began to boil. As in thermal desalination plants, the vapor produced was relatively pure steam. As steam is generated, it carries away with it its heat of vaporization. This energy comes from the liquid phase and results in a lowering of the liquid temperature and the cessation of boiling. Thus, as mentioned above, flash evaporation may be seen as a transfer of thermal energy from the bulk of the warm seawater to the small fraction of mass that is vaporized to become the working fluid. Approximately 0.5 percent of the mass of warm seawater entering the evaporator is converted into steam.
Figure 1. Open-Cycle OTEC Flow Diagram.



A large turbine is required to accommodate the huge volumetric flow rates of low-pressure steam needed to generate any practical amount of electrical power. Although the last stages of turbines used in conventional steam power plants can be adapted to OC- OTEC operating conditions, existing technology limits the power that can be generated by a single turbine module, comprising a pair of rotors, to about 2.5 MW. Unless significant effort is invested to develop new, specialized turbines (which may employ fiber-reinforced plastic blades in rotors having diameters in excess of 100 m), increasing the gross power generating capacity of a Claude cycle plant above 2.5 MW will require multiple modules and incur an associated equipment cost penalty. Condensation of the low-pressure working fluid leaving the turbine occurs by heat transfer to the cold seawater. This heat transfer may occur in a DCC, in which the seawater is sprayed directly over the vapor, or in a surface condenser that does not allow contact between the coolant and the condensate. DCCs are relatively inexpensive and have good heat transfer characteristics due to the lack of a solid thermal boundary between the warm and cool fluids. Although surface condensers for OTEC applications are relatively expensive to fabricate they permit the production of desalinated water. Desalinated water production with a DCC requires the use of fresh water as the coolant. In such an arrangement, the cold seawater sink is used to chill the fresh water coolant supply using a liquid-to-liquid heat exchanger.

Effluent from the low-pressure condenser must be returned to the environment. Liquid can be pressurized to ambient conditions at the point of discharge by means of a pump or, if the elevation of the condenser is suitably high, it can be compressed hydrostatically. Non-condensable gases, which include any residual water vapor, dissolved gases that have come out of solution, and air that may have leaked into the system, must be pressurized with a compressor. Although the primary role of the compressor is to discharge exhaust gases, it usually is perceived as the means to reduce pressure in the system below atmospheric. For a system that includes both the OC-OTEC heat engine and its environment, the cycle is closed and parallels the Rankine cycle. Here, the condensate discharge pump and the non-condensable gas compressor assume the role of the Rankine cycle pump.

The analysis of the cycle yields (Figure 1):



where,

m.ww is the mass flow rate of warm water; Cp the specific heat; Twwi and Twwo the seawater temperature at the inlet and outlet of the heat exchanger; hfg the heat of evaporation;and the enthalpies at the indicated points are given by h, with the subscript s referring to constant entropy. The turbine isentropic efficiency is given by nT. The subscript cw refers to the cold water.

6 – The 210 kW OC-OTEC Experimental Apparatus

As stated above, a 210 kW OC-OTEC Experimental Apparatus was conceived as the next step towards answering questions related to operation of OTEC plants. The apparatus was operated for six years (1993-1998) providing valuable data and pointing the way for future modifications and improvements in the OC-OTEC process. The turbine-generator was designed for an output is 210 kW for 26 °C warm surface water and a deep water temperature 6 °C. A small fraction (10 percent) of the steam produced was diverted to a surface condenser for the production of desalinated water. The highest production rates achieved were 255 kW (gross) with a corresponding net power of 10 3 kW and 0.4 l s-1 of desalinated water. These are world records for OTEC. It must be noted that the net power was not optimized because pumping losses were relatively high due to the use of a seawater system that was already available. It is expected that for a commercial size plant the ratio of net to gross power will be approximately 0.7.

The data and experience obtained demonstrated that the OC-OTEC process is technically feasible for the production of base load electricity and desalinated water. It was also demonstrated that frequency control in the island mode is achieved with either a load-diversion-governor (LDG) or with the vacuum compression system. The most significant and exciting lessons learned were those that were fundamental new insights into the OC-OTEC process. The two main discoveries were the unstable synchronous generator output, and the violent outgassing of seawater in the heat exchangers. The most annoying problem was the frequent failures of the grease lubricated bearings of the centrifugal pumps used for the vacuum and exhaust system. In retrospect, this was due to a major design oversight. Equipment operating at speeds higher than approximately 27,000 revolutions-per-minute should, in general, not use grease lubricated bearings. It was concluded that high speed centrifugal pumps with, for example, magnetic bearings can be used in future OC-OTEC systems to achieve extended life cycles, relatively low power consumption and, therefore, optimum net power.

7 – Design of a Small Land-Based OC-OTEC Plant

To understand the details of the design and operation of a Claude Cycle plant, it is useful to consider a specific example given by the design of a small land-based plant. The design philosophy reflects an emphasis on feasibility: a state-of-the-art cold water supply pipeline, a 1.6 m high-density-polyethylene (HDPE) conduit, was selected as the design starting point, rather than a prescribed net power output. Consistent with this choice, some critical hardware components were preferred over alternative configurations because they are presently available off-the-shelf. The major conclusion is that cost-effective electricity and desalinated water could be supplied to small South Pacific Island communities if appropriate financing is available. Depending on the importance of desalinated water for these communities, two global design options were identified:

1. OC-OTEC power plant proper, with a net power production capability of about 1.2 MW and desalinated water production of 2200 m3 per day;

2. OC-OTEC power plant fitted with a second-stage water flashing unit, with a net power production capability of about 1.1 MW and desalinated water production of 5150 m3 per day.

In addition, a 300-room air conditioning system can be included for resort development.

These configurations are cost competitive with conventional power plants if investment loans with interest rates of less than 5 percent are available and if credit for desalinated water and air-conditioning byproducts are included. However, the transfer of OTEC to small Pacific Islands should not be exclusively assessed from the perspective of present-day cost effectiveness since it offers these isolated communities some degree of energy independence while preserving their environment. In this regard the most important finding is not related to technical matters but rather to financial considerations: the announcement by industrialized countries, after the Kyoto Conference, that low interest loans would be made available to developing countries for renewable energy projects with minimal environmental impact.

The heat and mass balance is given in Figure 2. A 6156 kg s-1 flow rate of warm seawater at 26 °C is supplied via a 2.5 m ID FRP pipe. The pipe has an intake depth of 25 m and is 120 m long. Five inline dry motor vertical turbine propeller pumps (three operational, two standby) supply the flow to an intake pool below the first stage evaporator. The intake pool has a nominal operating level of 2.78 m from mean sea level (MSL). This level is selected to provide enough head (level) in the mixed flow discharge pool for gravity discharge into the ocean. Three inline submersible propeller-type pumps (two operational, one standby) bring 3175 kg s -1 of cold seawater through a 1.6 m OD pipe from a depth of 1000 m. The pipe length is 2590 m. A 3085 kg s-1 flow rate of 4 °C cold seawater is available for the OTEC system, whereas 90 kg s-1 is reserved for air-conditioning applications. An upriser takes the warm water into the evaporator. A pre-deaeration nozzle removes a portion of the non-condensables from the warm water accumulated below the spout plate. The evaporator spout plate has 122 spouts and the warm water flashes through the spouts into the evaporation chamber at a pressure of 2.76 kPa. A small fraction (26.1 kg s-1) of supply water is changed into steam and the rest is discharged into the first stage discharge pool at a temperature of 23.4 °C. The discharge pool at a level of 1.76 m MSL also acts as the supply pool for the second stage evaporator. The evaporation pressure in the second stage is 2.22 kPa. No pre-deaeration is provided in the second stage as the water has been deaerated in the first stage. The steam flow from the second
stage evaporator is 34 kg s-1. The effluent water from the second stage evaporator at 20 °C goes into the mixed water discharge pool.

Steam from the first stage evaporator enters the turbine at 2.74 kPa and leaves the turbine diffuser system at 1.29 kPa. The turbine generator system gives a gross output of 1838 kW. Steam exhausted from the turbine-diffuser system enters the first stage main surface condenser. The main condenser receives 2702 kg s-1 of cold seawater at 4 °C and condenses 92 percent of the incoming steam. The vent condenser gets 281 kg s -1 of 4 °C cold seawater supply and condenses 90 percent of the steam leaving the main condenser. The remaining steam and the non-condensables are evacuated by the vacuum compressor system. Steam generated by the second stage evaporator enters the second stage main condenser at 2.18 kPa and 19.2 °C. This steam is expected to be virtually free of non-condensables. The condenser receives 3085 kg s-1 of cold seawater at 9.4 °C and discharges it at 16.2 °C. The minimal amount of uncondensed steam, along with any non-condensables, goes to a vent condenser. A hook-up is provided to let the vapor compressor system remove any non-condensables and water vapor from the vent condenser.

Non-condensables and steam vapor from the first and second stage vent condenser enters the vacuum compressor system through a counter-current direct contact precooler. The precooler receives 4 °C cold seawater and ensures that the mixture temperature at the first stage inlet of the compressor system is not more than 5 °C and that the entire vapor is condensed until its partial pressure becomes equal to the seawater saturation pressure at 5 °C. The basic compressor system has four stages with direct contact coolers in-between. The fourth stage compressor takes the non-condensables from the third stage. The discharge from the fourth stage is re-injected at 30 kPa into the warm water effluent returning from the second stage evaporator. A fifth stage compressor is also provided to alternately bypass the re-injection scheme and discharge into the atmosphere. The first four stages are centrifugal, whereas the fifth stage is a positive displacement type.
Figure 2. Heat and Mass Balance of a 1.8 MW-gross OC-OTEC Plant with Additional 2nd Stage Seawater Desalination.

The cold and warm water effluents from the second stage combine into a mixed discharge pool with a nominal level of 0.75m MSL. A 3 m ID, 190 m long and 60 m deep pipe provides gravity discharge recourse for the mixed water system. The net power from the system is 1126 kW obtained after subtracting 334 kW for cold water supply pumping; 284 kW for warm water supply pumping; 80 kW for compressor system; and 14 kW for desalinated water pumping from the gross power produced. Without second stage water production the combined pumping losses will be reduced by approximately 100 kW (net increase) and the desalinated water production would be 25.8 kg s-1

8 – Closed cycle OTEC

The operation of a closed-cycle OTEC plant, using anhydrous ammonia as the working fluid, is modeled with the saturated Rankine cycle. Figure 3 shows a simplified flow diagram of the CC-OTEC cycle. The analysis of the cycle is straightforward. Based on a unit mass flow rate of ammonia vapor (kg s-1) in the saturated cycle:

Closed cycle maths

where, h is the enthalpy at the indicated state point. It follows that the heat-added plus the pump-work is equal to the heat-rejected plus the turbine-work.

9 – Design of a Pre-Commercial Floating Hybrid-OTEC Plant

To understand the details of the design and operation of a CC-OTEC plant, it is useful to consider a specific example given by the 5 MW (nominal) floating hybrid-OTEC. The author conceived this plant, as the pre-commercial plant needed to demonstrate the technical and economical viability of OTEC and to assess the environmental impact. Unfortunately, funding was not secured.

A simplified flow diagram of the power cycle is shown in Figure 4. The plant is based on a closed-cycle for electricity production and on a second stage, using the effluent water streams from the power cycle, for desalinated water production. The baseline is for a floating plant, i.e., the power and water cycles are housed in a barge or ship with the electricity transmitted to shore via a 15 cm submarine power cable and the desalinated water via a small, 15 to 16 cm diameter hose pipe.

Assuming temperatures of 26 °C and 4.5 °C for the surface and deep ocean waters, in the electricity production mode, a gross power output of 7920 kW, using off-the-shelf technology, is sufficient to produce 5260 kW-net with an in-plant consumption of 2660 kW. The power output for this cycle varies as a function of surface water temperature (the cold water temperature is essentially constant) by 860 kW per °C. For example, for 28 °C temperature (average summer conditions in Hawaii) the output would be 6980 kW-net. With the combined production of desalinated water and electricity, the baseline outputs would be 5100 kW-net (160 kW required for the second stage plant) and a daily production of 2281 m3 of desalinated water. This water output is only 20 percent of the amount that can be produced with the second stage.

The proposed baseline facility will employ pressurized ammonia as the working fluid in the power cycle. The baseline seawater flow rates are: 26.4 m3 per day of warm water and 13.9 m3 per day of cold water. These flow rates can be supplied using validated technologies. A 2.74 m (inside diameter) glass fiber reinforced plastic (FRP) cold water pipe will be suspended from the barge to a depth of 1000 m.



5 MWe OTEC Pre-commercial plant

Warm seawater will be drawn in through a 4.6 m FRP pipe from a depth of 20 m. The mixed effluent will be discharged through a 5.5 m FRP pipe at a depth of 60 m. This discharge depth has been selected to minimize the environmental impact. The baseline design employs compact heat exchangers for the evaporator and condenser. A chlorinating unit will be installed to minimize biofouling of the evaporator passages. It is known that biofouling from cold seawater is negligible and that evaporator fouling can be controlled effectively by intermittent chlorinating (50-100 parts per billion chlorine for 1 hour every day). Monitoring of the effluent water for elevated concentrations of ammonia or chlorine will be performed on a regular basis.

The seawater effluents from the power cycle exhibit a temperature difference of 12 °C. This residual thermal gradient could not be used in an additional power stage, but it allows the production of significant amounts of desalinated water through a Desalinated Water Cycle (DWC) or second stage water production. The DWC is an OC-OTEC cycle without the turbine. In a low-pressure vessel, or evaporator, the warm seawater is partially flashed into steam. The evaporator is connected to two surface condensers, where the steam is converted into desalinated (fresh) water by exchanging heat with the cold seawater. During this process, dissolved gases, mainly nitrogen and oxygen, are released from the warm seawater when pressures as low as 2 percent of an atmosphere are reached. These non-condensable gases must be evacuated continuously from the second condenser, or vent condenser, by a vacuum compressor to prevent accumulation and sustain the required low operating pressures. Non-condensables also adversely affect condensation performance through a blanketing effect at the heat exchanger walls. To reduce the impact of released non-condensable gases, a pre-deaeration chamber at about 17 kPa is installed below the flashing chamber, so that much outgassing occurs before steam generation, and at a higher pressure more suitable for compression. Moreover, gases are discharged into the warm seawater effluent at subatmospheric pressures of about 30 kPa, a procedure that not only saves power, but also restores the gas content of the warm seawater before it returns to the ocean.

Bibliography

Claude G. (1930), “Power from the Tropical Seas” in Mechanical Engineering, Vol. 52, No.12, 19, pp. 1039-1044. [The original paper]

Hubbard H.M (1991), “The Real Cost of Energy”, Scientific American, April 1991, Vol. 264, No. 4, PP 18-23. [The range of the external costs of energy production are presented]

Nihous G.C. and Vega L.A. (1991), “A Review of Some Semi-empirical OTEC Effluent Discharge Models”, in Oceans ’91, Honolulu, Hawaii. [The OTEC effluent models are summarized]

Quinby-Hunt M.S., Sloan D., and Wilde P. (1987), “Potential Environmental Impacts of Closed-cycle Ocean Thermal Energy Conversion”, in Environ Impact Assess Rev, Elsevier Science Pub. Co., Inc., New York, NY, pp. 169-198. [The environmental impact expected from CC-OTEC systems is discussed]

Tuesday, July 5, 2011

What is Inverter ?

An inverter is an electrical device that converts direct current (DC) to alternating current (AC); the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.

Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.

There are two main types of inverter. The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative. It is simple and low cost (~$0.10USD/Watt) and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers. A pure sine wave inverter produces a nearly perfect sine wave output (<3% total harmonic distortion) that is essentially the same as utility-supplied grid power. Thus it is compatible with all AC electronic devices. This is the type used in grid-tie inverters. Its design is more complex, and costs 5 or 10 times more per unit power (~$0.50 to $1.00USD/Watt).[1] The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were "inverted", to convert DC to AC.

The inverter performs the opposite function of a rectifier.

Basic designs

In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding. A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other. The alternation of the direction of current in the primary winding of the transformer produces alternating current (AC) in the secondary circuit.

The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact. The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact. The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth. This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios. A similar mechanism has been used in door bells, buzzers and tattoo guns.

As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs.
[edit] Output waveforms

The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply. Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves. The sine wave that has the same frequency as the original waveform is called the fundamental component. The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.

The quality of the inverter output waveform can be expressed by using the Fourier analysis data to calculate the total harmonic distortion (THD). The total harmonic distortion is the square root of the sum of the squares of the harmonic voltages divided by the fundamental voltage:



The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load. Some loads need a nearly perfect sine wave voltage supply in order to work properly. Other loads may work quite well with a square wave voltage.
[edit] Advanced designs
H-bridge inverter circuit with transistor switches and antiparallel diodes

There are many different power circuit topologies and control strategies used in inverter designs. Different design approaches address various issues that may be more or less important depending on the way that the inverter is intended to be used.

The issue of waveform quality can be addressed in many ways. Capacitors and inductors can be used to filter the waveform. If the design includes a transformer, filtering can be applied to the primary or the secondary side of the transformer or to both sides. Low-pass filters are applied to allow the fundamental component of the waveform to pass to the output while limiting the passage of the harmonic components. If the inverter is designed to provide power at a fixed frequency, a resonant filter can be used. For an adjustable frequency inverter, the filter must be tuned to a frequency that is above the maximum fundamental frequency.

Since most loads contain inductance, feedback rectifiers or antiparallel diodes are often connected across each semiconductor switch to provide a path for the peak inductive load current when the switch is turned off. The antiparallel diodes are somewhat similar to the freewheeling diodes used in AC/DC converter circuits.


" Simple Inverter "

"Square waveform with fundamental sine wave component, 3rd harmonic and 5th harmonic"

source :wikipedia.com

Monday, June 27, 2011

Genius Maker 2.1 , Scientific education

Satu lagi software edukasi dari www.goldenKstar.com, software ini berisi tentang 32 sofware edukasi subjek-subjek pada bidang matematika, fisika dan kimia. Dalam versi gratisnya memang sudah mencukupi bagi kita untuk mendapatkan edukasi pada ketiga bidang tersebut, karena diantaranya kita sudah mendapatkan software edukasi tentang: Graphik plotter, Analisa geometry, Matrix aljabar, Equation solver, Triangle solver, Unit converter, Refraction of rays, Lens and mirrors, Color theory, Transverse waves, Radioactive decay, Periodic table, dan Gas Laws. Pada Version 2.1 ini juga telah dilengkapi dengan color theory



anda dapat mendownloadnya di sini http://www.ziddu.com/download/2914140/GeniusMakerFree.exe.html

semoga bermanfaat.

Saturday, April 30, 2011

Simulasi Pembangkit PLTA, PLTU dan PLTP

PLTA (Pembangkit Listrik Tenaga Air)
PLTA menghasilkan energi listrik dengan mengandalkan energi potensial dan kinetik dari air. Energi listrik yang dibangkitkan biasa hidroelektrik. Bentuk utama dari pembangkit listrik jenis ini adalah motor yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari air. Pembangkit listrik tenaga air tidak hanya terbatas pada air dari sebuah waduk atau air terjun, melainkan juga meliputi pembangkit listrik yang menggunakan tenaga air dalam bentuk lain seperti tenaga ombak dan arus bawah laut.

Gambar dibawah adalah simulasi PLTA



download animasi flash Simulasi PLTA:
http://www.ziddu.com/download/7711700/PLTA.exe.html

PLTU (Pembangkit Listrik Tenaga Uap)
Pembangkit Listrik Tenaga Uap(PLTU) Batubara adalah salah satu jenis instalasi pembangkit tenaga listrik dimana tenaga listrik didapat dari mesin turbin yang diputar oleh uap yang dihasilkan melalui pemanasan oleh batubara.

Gambar dibawah adalah simulasi PLTU Batubara.



download animasi flash PLTU Batubara:
http://www.ziddu.com/download/7711581/diagrama.exe.html
***

Gambar snapshot Animasi langkah-langkah proses PLTU Batubara.



download animasi flash PLTU Batubara:
klik http://www.ziddu.com/download/7711533/COAL.EXE.html

PLTP (Pembangkit Listrik Panas Bumi)
Pembangkit Listrik Tenaga Panas Bumi adalah pembangkit listrik (Power generator) yang menggunakan panas bumi(geothermal) sebagai energi penggeraknya.

Untuk membangkitkan listrik dengan panas bumi dilakukan dengan mengebor tanah di daerah yang berpotensi panas bumi untuk membuat lubang gas panas yang akan dimanfaatkan untuk memanaskan ketel uap(boiler) sehingga uapnya bisa menggerakkan turbin uap yang tersambung ke Generator.
Untuk panas bumi yang mempunyai tekanan tinggi, dapat langsung memutar turbin generator, setelah uap yang keluar dibersihkan terlebih dahulu.
Gambar snapshot Animasi langkah-langkah proses Pembangkit Listrik Tenaga Panas Bumi.



download animasi flash Pembangkit Listrik Tenaga Panas Bumi:
http://www.ziddu.com/download/7711582/Geothermal.exe.html

Monday, April 25, 2011

Transmisi Listrik Tanpa Kabel, Mungkinkah ??

Pada bulan October 18 – 20, 2006, Belgrade, SASA, Serbia diadakan Simposium INTERNATIONAL SYMPOSIUM NIKOLA TESLA ke-6, ada makalah yang berjudul "Wireless Electrical Transmission : Developtment anda Possibility yang dibawakan oleh : Dr. Tanuj Kumar Mandal dari India, dan banyak lagi peserta simposium yang mengangkat judul yang serupa.
Listrik yang kita kenal mulai dari dulu hingga sekarang menggunakan kabel, diupayakan ke depan tidak menggunakan kabel atau Wireless. Persoalannya secara teknis hal itu dapat diwujudkan namun dari segi dampak sosial mungkin menjadi kajian yang mendalam bagaimana kemasannya dan aplikasinya sehingga tidak menimbulkan resiko-resiko yang merugikan orang. Secara teknis pula kalau ada teknologi elektronika daya, sebenarnya hal tersebut tidak menjadi persoalan.
Transmisi listrik tanpa kabel bukanlah hanya sebuah teori namun sebuah kenyataan. Energi listrik dapat ditekan secara ekonomis dengan mentransmisikannya tanpa kabel. Beberapa peneliti dengan berbagai penelitian telah bereksperimen dan mengukur secara kualitatif dan kuantitatif. Dr. N.Tesla merupakan pioner dari penemuan ini.
Transmisi tanpa kabel dapat dibangkitkan dengan daya besar dan Losses rendah (90-97 % lebih efisien) karena tidak menggunakan banyak tower dan Gardu Induk. Sistem ini akan mengurangi biaya energi yang digunakan konsumen.

PRINSIP KERJA

Secara prinsip bahwa wireless menggunakan transmiter (pemancar) dan receiver (penerima), begitu juga dengan electrical transmission menggunakan keduanya asalkan induktansi memiliki frekuensi yang sama hal ini dapat terjadi. Dari gambar di bawah ini adalah prinsip transmisi listrik tanpa kabel :

Gambar Prinsip Transmisi Listrik Tanpa Kabel

Sunday, April 24, 2011

What is Distributed Generation?

Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources.

Currently, industrial countries generate most of their electricity in large centralized facilities, such as fossil fuel (coal, gas powered) nuclear or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and negatively affect the environment.



Economies of scale

Most plants are built this way due to a number of economic, health & safety, logistical, environmental, geographical and geological factors. For example, coal power plants are built away from cities to prevent their heavy air pollution from affecting the populace. In addition, such plants are often built near collieries to minimize the cost of transporting coal. Hydroelectric plants are by their nature limited to operating at sites with sufficient water flow. Most power plants are often considered to be too far away for their waste heat to be used for heating buildings.

Low pollution is a crucial advantage of combined cycle plants that burn natural gas. The low pollution permits the plants to be near enough to a city to be used for district heating and cooling.

Localised generation

Distributed generation is another approach. It reduces the amount of energy lost in transmitting electricity because the electricity is generated very near where it is used, perhaps even in the same building. This also reduces the size and number of power lines that must be constructed.




Typical distributed power sources in a Feed-in Tariff (FIT) scheme have low maintenance, low pollution and high efficiencies. In the past, these traits required dedicated operating engineers and large complex plants to reduce pollution. However, modern embedded systems can provide these traits with automated operation and renewables, such as sunlight, wind and geothermal. This reduces the size of power plant that can show a profit.
[edit] Distributed energy resources

Distributed energy resource (DER) systems are small-scale power generation technologies (typically in the range of 3 kW to 10,000 kW) used to provide an alternative to or an enhancement of the traditional electric power system. The usual problem with distributed generators are their high costs.

One popular source is solar panels on the roofs of buildings. The production cost is $0.99 to 2.00/W (2007) plus installation and supporting equipment unless the installation is Do it yourself (DIY) bringing the cost to $5.25 to 7.50 (2010).[1] This is comparable to coal power plant costs of $0.582 to 0.906/W (1979),[2][3] adjusting for inflation. Nuclear power is higher at $2.2 to $6.00/W (2007).[4] Some solar cells ("thin-film" type) also have waste disposal issues, since "thin-film" type solar cells often contain heavy-metal electronic wastes, such as Cadmium telluride (CdTe) and Copper indium gallium selenide (CuInGaSe), and need to be recycled. As opposed to silicon semi-conductor type solar cells which is made from quartz. The plus side is that unlike coal and nuclear, there are no fuel costs, pollution, mining safety or operating safety issues. Solar also has a low duty cycle, producing peak power at local noon each day. Average duty cycle is typically 20%.

Another source is small wind turbines. These have low maintenance, and low pollution. Construction costs are higher ($0.80/W, 2007) per watt than large power plants, except in very windy areas. Wind towers and generators have substantial insurable liabilities caused by high winds, but good operating safety. In some areas of the US there may also be Property Tax costs involved with wind turbines that are not offset by incentives or accelerated depreciation.[5] Wind also tends to be complementary to solar; on days there is no sun there tends to be wind and vice versa.[citation needed] Many distributed generation sites combine wind power and solar power such as Slippery Rock University, which can be monitored online.

Distributed cogeneration sources use natural gas-fired microturbines or reciprocating engines to turn generators. The hot exhaust is then used for space or water heating, or to drive an absorptive chiller [6] for air-conditioning. The clean fuel has only low pollution. Designs currently have uneven reliability, with some makes having excellent maintenance costs, and others being unacceptable.
[edit] Cost factors

Cogenerators are also more expensive per watt than central generators. They find favor because most buildings already burn fuels, and the cogeneration can extract more value from the fuel.

Some larger installations utilize combined cycle generation. Usually this consists of a gas turbine whose exhaust boils water for a steam turbine in a Rankine cycle. The condenser of the steam cycle provides the heat for space heating or an absorptive chiller. Combined cycle plants with cogeneration have the highest known thermal efficiencies, often exceeding 85%.

In countries with high pressure gas distribution, small turbines can be used to bring the gas pressure to domestic levels whilst extracting useful energy. If the UK were to implement this countrywide an additional 2-4 GWe would become available. (Note that the energy is already being generated elsewhere to provide the high initial gas pressure - this method simply distributes the energy via a different route.)

Future generations of electric vehicles will have the ability to deliver power from the battery into the grid when needed.[7] An electric vehicle network could also be an important distributed generation resource.

Microgrid

A microgrid is a localized grouping of electricity generation, energy storage, and loads that normally operates connected to a traditional centralized grid (macrogrid). This single point of common coupling with the macrogrid can be disconnected. The microgrid can then function autonomously.[8] Generation and loads in a microgrid are usually interconnected at low voltage. From the point of view of the grid operator, a connected microgrid can be controlled as if it was one entity. Microgrid generation resources can include fuel cells, wind, solar, or other energy sources. The multiple dispersed generation sources and ability to isolate the microgrid from a larger network would provide highly reliable electric power. Byproduct heat from generation sources such as microturbines could be used for local process heating or space heating, allowing flexible trade off between the needs for heat and electric power.
[edit] Modes of power generation

DER systems may include the following devices/technologies:

* Combined heat power (CHP)
* Fuel cells
* Micro combined heat and power (MicroCHP)
* Microturbines
* Photovoltaic Systems
* Reciprocating engines
* Small Wind power systems
* Stirling engines

Communication in DER systems

* IEC 61850-7-420 is under development as a part of IEC 61850 standards which deals with the complete object models as required for DER systems. It uses communication services mapped to MMS as per IEC 61850-8-1 standard.

* OPC is also used for the communication between different entities of DER system.

[edit] Legal requirements for distributed generation

In 2010 Colorado enacted a law requiring that by 2020 that 3% of the power generated in Colorado utilize distributed generation of some sort.[9][10]

See also
Energy portal
Sustainable development portal

* Automatic meter reading
* Autonomous building
* Baseload
* Droop speed control
* Cogeneration (combined heat and power)
* Demand response
* Energy harvesting
* Electric power transmission
* Electric power
* Electrical generator
* Electricity distribution
* Electricity generation
* Electricity market
* Electricity retailing
* Energy demand management
* Feed-in Tariff
* Future energy development
* Green power superhighway
* Grid-tied electrical system
* Hydrogen station
* IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems

* Islanding
* Low-cost photovoltaic cell
* Microgeneration
* Microgrid
* Microturbine
* Net metering
* Power system automation
* Relative cost of electricity generated by different sources
* Remote-area power supply
* Renewable energy
* Renewable energy development
* Small capitalism
* Small is Profitable
* Smart meter
* Smart power grid
* Solar Guerrilla
* Sustainable community energy system
* Trigeneration
* Utility submeter
* Vehicle-to-grid (V2G)
* Virtual power plant
* World Alliance for Decentralized Energy

References

1. ^ Solar panel production costs
2. ^ Osti 1979
3. ^ Coal power plants future
4. ^ How much?
5. ^ [1] Retrieved on 20 October 11, 2010
6. ^ Cogeneration with absorptive chiller
7. ^ How electric vehicles are a part of distributed generation
8. ^ Stan Mark Kaplan, Fred Sissine,(ed.) Smart grid: modernizing electric power transmission and distribution... The Capitol Net Inc, 2009, ISBN 1587331624, page 217
9. ^ "Going Solar Is Harder Than It Looks, a Valley Finds" article by Kirk Johnson in The New York Times June 3, 2010
10. ^ "Colorado Increases Renewables Requirements" blog by Kate Galbraith on NYTimes.Com March 22, 2010

External links

* The UK District Energy Association - advocating the construction of locally distributed energy networks
* Decentralized Power as Part of Local and Regional Plans
* IEEE P1547 Draft Standard for Interconnecting Distributed Resources with Electric Power Systems
* World Alliance for Decentralized Energy
* The iDEaS project by University of Southampton on Decentralised Energy
* Biofuels and gas pressure energy recovery
* DER-Model
* DERlab
* Center for Energy and innovative Technologies
* Decentralized Power System (DPS) in Pakistan